Targeting hypoxia for cancer
Tumors contain localized areas of low oxygen (hypoxia). Cells adapt to survive in these areas via multiple compensatory mechanisms including stimulation of angiogenesis and metabolic switching to glucose as an energy source, so reducing their oxygen dependency.
Tumors contain localized areas of low oxygen (hypoxia). Cells adapt to survive in these areas via multiple compensatory mechanisms including stimulation of angiogenesis and metabolic switching to glucose as an energy source, so reducing their oxygen dependency.
Methods
A specialised hypoxia chamber (BioSpherix Inc) was used to treat A172 glioblastoma cells to 1% oxygen to mimic the level reported at the hypoxic core of tumours. Cells were pre-treated with 10µM compound prior to exposure to hypoxia.
Temsirolimus, a robust inhibitor of hypoxia driven VEGF and lactate secretion and also glucose uptake was used as a positive control. Cell density, VEGF and lactate secretion plus glucose remaining in culture were measured 48 hours after treatment using the following commercially available assays respectively; CyQUANT (Thermofisher), VEGF AlphaLISA (PerkinElmer), L-Lactate assay (Cayman) and a glucose detection assay (Promega).
U937 monocytic cells were differentiated into a macrophage phenotype using phorbol 12-myristate 13- Acetate (PMA). Differentiated macrophages were exposed to hypoxia or high levels of lactate to mimic tumour micro-environment conditions. Control macrophages were differentiated with IL-4 and IL-13 to generate an M2 phenotype, known to share characteristics with tumour associated macrophages. Differentiated macrophages were characterised by flow cytometry and following hypoxia treatment, levels of VEGF in the supernatant measured as described above.